返回第一百五十五章 用代数几何来解决数论问题!(2 / 3)  终极学霸首页

护眼 关灯     字体:

上一页目录 纯阅读 下一页

或者是研究其他领域的数学家,就只能半懵半懂,或者是从头懵逼到尾。

    看不懂,根本看不懂。

    ……

    京大礼堂。

    台上的李牧,并不知道自己的报告已经吸引了那么多国际知名的数学家来看。

    他一心一意地继续在台上进行着证明。

    不管是分歧理论还是非阿基米德绝对值,都是他在最近想到的方法。

    而这些灵感的来源,就在于那天林尧教授的报告。

    林尧那天的报告主题【射影簇中超曲面的非阿基米德亚形映射】,尽管和哈代-李特尔伍德猜想没有太大的联系,但是数学和数学之间是共通的,方法之间也是共通的。

    只要找到了其中的关系,就能够将其利用起来。

    “……通过定理2.1和定理2.2,特征p的有限场的代数扩展,其非阿基米德绝对组与^Zp同构于……”

    【A(F)→ H1(GF, T (A))……】

    在黑板上再度写下了一个式子。

    李牧站直了身体,脸上略带笑意。

    而与此同时,场下那些听懂的数学家们,则再度露出了吃惊。

    “等等……他这是把整个问题转化成了代数几何问题?”

    邱成桐眯起了眼睛。

    李牧赫然通过一系列的转换,竟是在这一步把原来的哈代-李特尔伍德猜想,完全转换为了代数几何中的问题。

    “他难道想用代数几何的方法解决吗?”

    邱成桐的心中,已然生出了这个想法。

    用代数几何的方法来解决数论中的问题!

    这是多么疯狂的一件事。

    在过去,这么做过的数学家中,有一位叫做格尔德·法尔廷斯。

    就是那位当今世界上最顶级的数学家之一,其利用代数几何的方法,证明了数论中的莫德尔猜想,最终也借此得到了菲尔兹奖。

    而现在李牧也要用这种方法来完成证明?

    旁边的张一唐,也是同样的表情。

    他见过很多天才,他自己也算是一个天才,但是却也没想到李牧会打算这么做。

    与此同时,在直播间中也有很多意识到李牧意图的数学家们,都为之倒吸一口冷气。

    “这真的能做到吗?”

    英国,安德鲁·怀尔斯和西蒙·唐纳森两人一直都在通话中,对李牧的报告内容进行交流。

    他们都是顶级的数学家,所以也能够通过李牧所写的内容,理解其中的意思。

    而对于这个问题,他们也不由保持了半晌的沉默。

    直到最后。

    “希望他可以吧。”

    哪怕李牧是用其他方法把这个猜想给证明出来,大概都不会让他们如此激动。

    但如果真的是利用代数几何方法把这个问题给搞定了,那么这对于数学界的意义是十分深远的。

    因为这将再度激发数学家们对实现郎兰兹纲领,以及实现代数几何和数论统一的信心。

    这场报告,也将会成为数学界的经典报告。

    ……

    主席台上。

    李牧微微转过头笑道:“相信已经有一些朋友看出了我的想法。”

    “那么到这里,我们也将正式进入到代数几何的领域——”

    “而在这里,请让我先简单地为大家介绍一个新的理论。”

    “我管它叫k-模理论。”

    “你们暂时可以将它简单理解为k理论和模空间的结合。”

    他的这句话,再度让在场的数学家们为之震惊了起来。

    把K理论和模空间进行结合?

    K理论和代数几何,代数数论等领域都有着密切关系,而模空间又是代数几何重点研究的对象。

    这两者在过去也不是没有过被结合起来使用的先例,但很少很少,因为一直都没有一个系统的方法,能够让这两种方法完美的结合起来。

    而现在李牧的意思……就是要实现这一点?

    李牧没有多做解释,转过头,便在黑板上开始写了起来。

    场下所有人都屏息凝神,哪怕是看不懂的,也知道李牧在干大事。

    随着一个黑板的式子列出,邱成桐就露出了恍然的表情。

    “原来如此,竟然是将模空间中的每个点按照K0函子来计算,以此生成投射模同构类的半群……对了,再加上该模空间的不完备性,之后,他大概就要借此对孪生素数对的分布进行估计了……”

    作为顶尖的数学家,邱成桐的数学直觉也当然很强。

    几乎是很快的,他就看出了李牧的目的。

    但虽然他看出来了,让他去做的话,他也只能选择放弃。

    想要做到这一点,在技术上太难太难。

    特别是后面需要进行的计算环节,就更加考验对整个方法的把控。

   

『加入书签,方便阅读』

上一页目录 下一页